Modification of Al - Si Alloy ( LM 28 ) By MnO 2 Addition

نویسنده

  • Vandana J Rao
چکیده

Modification of primary silicon was studied in Al-Si hypereutectic alloys with 17 Wt % silicon content. The alloys modified through non-conventional method using oxide addition. The effect of oxide on the morphology and size of Si phases in the hypereutectic Al-Si alloys investigated. The results show that the addition of MnO2 to the hypereutectic Al-Si alloys can modify the primary Si phases. In this, the primary Si phase is refine and the shape of the eutectic Si changed from long needle-like to short rod-like. The modified Al-17Si alloys have microstructures consisting of uniformly distributed α-Al phase, eutectic Al–silicon and fine primary Si particles in the inter-dendrite region. The evaluation of microstructure showed that the fraction of primary silicon decreased with increasing the oxide content. The improved properties are dependent on uniform distribution of fine fibrous eutectic Al–silicon and fine primary Siparticles. The finest microstructure could be observed respectively when 2.5 wt % and 5 wt% MnO2 were added. In this case, hardness, tensile strength and % elongation increased than without added casting. Keywords—Hardness, Hypereutectic Al-Si alloy, Microstructural Refinement, Modification, Tensile strength.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of Primary Si Crystals and Fe-rich Intermetallics in LM28 Al Alloy Fabricated Through Thixoforming

In the present research, thixoforming route was carried out in order to enhance the microstructural features of LM28 piston alloy. Typical microstructure of this alloy was composed of coarse, polygonal primary silicon particles, eutectic matrix and intermetallic phases. Thermal analysis was carried out to study the solidification path of the base alloy and determine the major arrest temperature...

متن کامل

Study of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys

The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...

متن کامل

Study of the Mechanism and Causes of Pore Formation in Sr-modified Al-Si Alloys

The formation of microporosity in modified Al-Si alloys has been reviewed in the present study. A major concern in modification is the increased tendency to form microporosity in the macro-shrinkage free Al-Si alloy castings. It has also been demonstrated that at low hydrogen contents (0.1cc/ 100g, Al), where only shrinkage porosity should occur, the effect of Sr-modification on porosity conten...

متن کامل

Study on Dual Modification of Al-17%Si Alloys by Structural Heredity

In this study, Al-17%Si alloys were dual modified by fine-grained structural materials (FSM) according to structural heredity. Microstructure and thermal analyses were undertaken to study the modification effect of the FSM master alloy on primary and eutectic Si. Primary Si is refined to a smaller size and eutectic Si is modified from needle-like to fibrous shape after FSM master alloy addition...

متن کامل

Comparison of segregations formed in unmodified and Sr-modified Al-Si alloys studied by atom probe tomography and transmission electron microscopy

The mechanical properties of Al-7 wt.% Si can be enhanced by structural modifications of its eutectic phase. Addition of low concentrations of certain elements, in this case 150 wt-ppm Sr, is enough to cause a transition from a coarse plate-like Si structure to a finer coralline one. To fully understand the operating mechanism of this modification, the composition of the eutectic Si phase in un...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014